Connect with us

Non classé

From Data to Decisions: Revolutionizing Supply Chain Management with Demand Sensing and Forecasting

Published

on

From Data To Decisions: Revolutionizing Supply Chain Management With Demand Sensing And Forecasting

For demand sensing and forecasting in the supply chain, the ability to quickly ingest and analyze data, and subsequently make strong business decisions is crucial. While this is true across all aspects of supply chain management, it is especially important when tracking actual demand versus projected demand. This crucial need can be slowed down or impeded by issues such as a lack of end-to-end supply chain visibility, antiquated data management processes, or even inaccurate data.

Significant disruptions along the supply chain from external factors such as geopolitical events, supplier capacity issues, poor network inventory visibility, and constant changes in buyer behavior, make synchronizing demand and supply very difficult. This is further complicated by inaccurate data from dozens of disparate applications and enterprise systems within the organization, its partners, and its suppliers. Traditional forecasting methods struggle to keep up with rapid changes in global supply chains, often failing to predict demand accurately during volatile periods.

Companies have traditionally relied on historical data and internal systems for demand forecasting, but this approach is limited in its ability to respond to sudden market shifts. The ability to sense demand disruptions in real time and improve forecasting in this environment is difficult to achieve, especially if you want a high degree of customer satisfaction, and it also highlights the responsiveness needed to adapt quickly to unexpected changes. Companies that leverage demand sensing can emerge stronger and better positioned after disruptions.

An Introduction to Demand Sensing and Forecasting

Demand sensing and demand forecasting are both crucial aspects of optimizing supply chains, but they do have slightly different functions in their approach and focus. Demand sensing uses real-time data and analytics to identify and respond to immediate demand fluctuations, while demand forecasting uses historical data to predict future demand over a longer period (months or years). Different methods, such as statistical modeling and machine learning, are used to enhance the accuracy and adaptability of these processes. Both areas are crucial for companies when it comes to projecting sales, managing inventory, and coordinating replenishment. In the end, the goal is to accurately predict customer demand by using predictive models to forecast future demand.

From a metrics standpoint, companies need to accurately measure forecast versus actual sales, inventory turnover, stockout rates, inventory obsolescence, order fill rates, and on-time in-full percentage. When forecasting, it is important to predict demand for a particular product to avoid excess inventory and stockouts. Advanced analytics and AI tools provide granular insights into sales activities, inventory levels, and financial metrics, supporting more precise decision-making.

Recognizing the growing complexity of these demands, InterSystems surveyed 450 senior supply chain practitioners and stakeholders to examine key supply chain technology challenges, trends, and decision-making strategies across five key use cases: fulfillment optimization; demand sensing and forecasting; supply chain orchestration; production planning optimization; and environmental, social, and governance (ESG). This blog is Part 2 in our Optimizing Supply Chain Performance with Unified Data series, with a focus on demand sensing and forecasting.In the unified data survey, respondents were asked how they currently integrate and prepare disparate information for decision-making. Not surprisingly, 42% of respondents use manual methods, including spreadsheets, to integrate and prepare disparate information for decision-making. While spreadsheets can be incredibly useful and are clearly used by a lot of companies for planning purposes, they also have limitations.

As the picture above shows, spreadsheets are not a useful tool when it comes to decision intelligence. Decision intelligence is focused on improving decision-making by understanding how decisions are made and using AI and machine learning to optimize outcomes. In supply chain, an AI-enabled decision intelligence platform can optimally manage disruptions when and before they occur so companies can react faster and ensure that products are available when companies need them, while also monitoring engagement to improve sales outcomes.

Current State of Demand Sensing and Forecasting

One of the biggest issues with demand sensing and forecasting is that human intervention is often required. This is because AI often lacks the nuances to fully understand the complexity of demand patterns. So, while human intervention is required to bridge that gap, it can be both time-consuming and error-prone, especially if the data a company is relying on is bad. According to the survey results, when asked how they currently forecast demand, 36% of respondents indicated that they have several solutions that require staff input. Aside from the aforementioned issues with human input, the use of multiple systems often leads to disjointed, disparate data silos. When different systems are unable to communicate, decisions take longer to make and are usually not as accurate, leading to errors in demand sensing and forecasting. To maintain data accuracy and relevance, it is crucial that data is updated and transferred regularly.

The harsh reality is that the use of intelligent data platforms is not widespread. The survey revealed that only 27% of respondents have an intelligent data platform. This is most notable in logistics and transport (18%) and pharmaceuticals (19%) where less than one-fifth of companies are currently using an intelligent data platform. For these platforms to be effective, it is essential that all data is validated before being used in forecasting models to ensure consistency and accuracy.

Demand Sensing and Forecasting Challenges with External Demand Signals

According to the survey, the top demand sensing and forecasting challenges are related to issues with data: its collection, visibility, and analysis. It’s no surprise that all of these issues are directly tied to data inconsistencies. Clean data is essential to ensure accuracy and consistency, especially when integrating external datasets.

When asked to identify their top challenges in demand sensing and forecasting, respondents cited the following: no real-time visibility along the supply chain (41%), current processes are too manual (39%), inaccuracies in data within the organization, partners, and suppliers (37%), and no real-time sensing of demand and supply changes (34%). Understanding demand and supply shifts, and reacting accordingly, is at the heart of demand sensing and forecasting. From the demand side, shifts are the result of changing consumer preferences, brand loyalty, or economic factors. From the supply side, these market shifts are tied to raw material pricing or availability, labor shortages, or new entrants to the market. For those companies that cannot sense shifts in real-time, their forecasting accuracy suffers, thus leading to lost sales and higher cost of goods sold.

Supply chain visibility has been a hot topic over the last few years, but most people think of it only from a shipment standpoint. Point-to-point tracking solutions have seen billions of dollars in venture capital investments, but supply chain visibility goes well beyond these solutions. Supply chain visibility enables companies to track the location and status of products, components, and materials as they move through the supply chain. However, it also encompasses the entire end-to-end supply chain, from the sourcing of raw materials to the final delivery to the end consumer. At the core of supply chain visibility is access to real-time data for inventory optimization, tracking, and potential disruptions. To respond effectively to demand changes, companies must be able to adjust inventory levels quickly in response to market volatility and shifting consumer demand.

The second challenge identified by respondents is reliance on manual processes. More and more often, we hear about the autonomous supply chain. Automated demand sensing processes leverage real-time data and advanced analytics to predict short-term demand fluctuations, while manual methods rely on human interpretation of data, which can be time-consuming and prone to errors.

A third challenge highlighted by respondents is inaccuracies in data from within the organization, partners, and suppliers. As far back as 1957, computer scientists have referred to this as “garbage in, garbage out.” In a syndicated newspaper article about US Army mathematicians and their work with early computers, Army Specialist, William D. Mellin explained that computers cannot think for themselves, and that “sloppily programmed” inputs inevitably lead to incorrect outputs. A lot has changed since then, but the underlying principle is the same. Inaccurate data will lead to errors in demand sensing and forecasting, which will impact inventory management, supply chain operations, and profitability.

Demand Sensing and Forecasting Capabilities to Improve Forecast Accuracy

According to the survey, the capabilities respondents believe would most improve their ability to accurately forecast demand correlate with their biggest challenges. The top capability survey respondents said would improve their ability to forecast demand is the ability to ingest and analyze real-time data from many sources in disparate formats (27%). InterSystems Supply Chain Orchestrator is a data platform that ingests all relevant data from the sources that matter, both internally and externally, including geopolitical events, information on supply chain product integrity issues, supplier fulfillment discrepancies, and much more. Harmonizing and normalizing all this information to provide accurate data in real time, the platform simulates your business processes and then applies embedded AI and ML capabilities. With no “rip-and-replace” needed, companies gain accelerated implementation of powerful new capabilities, while lowering total cost of ownership in a way unmatched in the industry today.

The second capability identified by respondents is integrated inventory management with enterprise resource planning (ERP) and electronic point of sale (EPOS) to automate demand-sensing and forecasting (24%). Supply Chain Orchestrator enables organizations to adjust forecast plans with high levels of accuracy to successfully navigate sudden events, disruptions, or trends that affect demand, transforming fulfillment optimization. By leveraging demand sensing, organizations can increase output by adjusting production schedules in response to predicted demand, ensuring they meet customer needs effectively. Organizations can integrate more advanced sensing and forecasting capabilities with their point-of-sale, ERP systems, or applications, achieving faster time-to-value.

Final Thought on Demand Sensing and Forecasting

To be agile and competitive, organizations must be capable of extracting critical insights in near real-time. This remains a significant challenge when so many businesses lack end-to-end visibility or rely on manual data analysis and ad hoc provisioning and integration of different solutions. For demand sensing and forecasting, a reliance on manual data analysis, especially given the current state of disparate data streams, can be catastrophic. If companies are unable to understand the reasons behind supply shifts, they will be unable to adjust their demand forecasting accurately, which will lead to improper inventory availability, lost sales, and higher cost of goods sold.

Demand sensing and forecasting efficiency requires unified, trusted, and harmonized data. As an intelligent supply chain decision intelligence platform, InterSystems Supply Chain Orchestrator provides a complete view of an organization’s supply chain, harmonizing and normalizing disparate data from applications, suppliers, manufacturers, distributors, retailers, and consumers. It uses AI and ML to uncover what is currently happening, predicts what is likely to happen next, and uses prescriptive insights to outline the best options, ensuring maximum effectiveness and minimum delay.

Read the full report here.

Chris Cunnane is the Supply Chain Product Marketing Manager at InterSystems. In this role, he is responsible for developing and executing marketing strategy and content for the InterSystems supply chain technology suite. Chris has 20+ years of supply chain expertise, leading the supply chain practice at ARC Advisory Group, as well as holding various sales, marketing, and operations roles in the wholesale, retail, and automotive parts markets. He holds a BA in Communications from Stonehill College and an MA in Global Marketing Communications from Emerson College.

The post From Data to Decisions: Revolutionizing Supply Chain Management with Demand Sensing and Forecasting appeared first on Logistics Viewpoints.

Continue Reading

Non classé

India–U.S. Trade Announcement Creates Strategic Options, Not Executable Change

Published

on

By

India–u.s. Trade Announcement Creates Strategic Options, Not Executable Change

The announcement by Donald Trump and Narendra Modi of an India–U.S. “trade deal” has drawn immediate attention from global markets. From a supply chain and logistics perspective, however, the more important observation is not the scale of the claims, but the lack of formal detail required for execution.

At this stage, what exists is a political statement rather than a completed trade agreement. For companies managing sourcing, manufacturing, transportation, and compliance across India–U.S. trade lanes, uncertainty remains the defining condition.

What Has Been Announced So Far

Based on public statements from the U.S. administration and reporting by CNBC and Al Jazeera, several points have been asserted:

U.S. tariffs on Indian goods would be reduced from an effective 50 percent to 18 percent

India would reduce tariffs and non tariff barriers on U.S. goods, potentially to zero

India would stop purchasing Russian oil and increase energy purchases from the United States

India would significantly increase purchases of U.S. goods across energy, agriculture, technology, and industrial sectors

Statements from the Indian government have been more limited. New Delhi confirmed that U.S. tariffs on Indian exports would be reduced to 18 percent, but it did not publicly confirm commitments related to Russian oil, agricultural market access, or large scale procurement from U.S. suppliers.

This divergence matters. In supply chain planning, commitments only become relevant when they are documented, scoped, and enforceable.

Why This Is Not Yet a Trade Agreement

From an operational standpoint, the announcement lacks several elements required to support planning and execution:

No published tariff schedules by HS code

No clarification on rules of origin

No definition of non tariff barrier reductions

No implementation timelines

No enforcement or dispute resolution mechanisms

Without these components, companies cannot reliably model landed cost, supplier risk, or network design changes.

By comparison, India’s recently announced trade agreement with the European Union includes detailed provisions covering market access, regulatory alignment, and investment protections. Those provisions are what allow supply chain leaders to translate trade policy into operational decisions. The U.S. announcement does not yet meet that threshold.

Implications for Supply Chains

Tariff Reduction Could Be Material if Formalized

An 18 percent tariff rate would improve India’s competitive position relative to regional peers such as Vietnam, Bangladesh, and Pakistan. If implemented and sustained, this could support incremental sourcing from India in sectors such as textiles, pharmaceuticals, and light manufacturing.

For now, however, this remains a scenario rather than a planning assumption.

Energy Commitments Are the Largest Unknown

The claim that India would halt purchases of Russian oil has significant implications across energy, chemical, and manufacturing supply chains. Russian crude has been a key input for Indian refineries and downstream industrial production.

A shift away from that supply would affect energy input costs, tanker routing, port utilization, and U.S.–India crude and LNG trade volumes. None of these impacts can be assessed with confidence without confirmation from Indian regulators and implementing agencies.

Agriculture Remains Politically and Operationally Sensitive

U.S. officials have suggested expanded access for American agricultural exports. Historically, agriculture has been one of the most protected and politically sensitive sectors in India.

Any meaningful liberalization would raise questions around cold chain capacity, port infrastructure, domestic political resistance, and regulatory compliance. These factors introduce execution risk that supply chain leaders should consider carefully.

Compliance and Digital Trade Issues Are Unresolved

Several areas remain undefined:

Whether India will adjust pharmaceutical patent protections

Whether U.S. technology firms will receive exemptions from digital services taxes

Whether labor and environmental standards will be linked to market access

Each of these issues influences sourcing strategies, contract terms, and long term cost structures.

Practical Guidance for Supply Chain Leaders

Until formal documentation is released, a measured approach is warranted:

Avoid making structural network changes based on political announcements

Model tariff exposure using multiple scenarios rather than a single assumed outcome

Monitor customs and regulatory guidance rather than headline statements

Assess exposure to potential energy cost changes in Indian operations

Track implementation of the India–EU agreement as a near term reference point

Bottom Line

This announcement suggests a potential shift in the direction of India–U.S. trade relations, but it does not yet provide the clarity required for operational decision making.

For now, it creates strategic optionality rather than executable change.

Until tariff schedules, regulatory commitments, and enforcement mechanisms are formally published, supply chain and logistics leaders should treat this development as informational rather than actionable. In trade, execution begins only when the documentation exists.

The post India–U.S. Trade Announcement Creates Strategic Options, Not Executable Change appeared first on Logistics Viewpoints.

Continue Reading

Non classé

Winter weather challenges, trade deals and more tariff threats – February 3, 2026 Update

Published

on

By

Winter weather challenges, trade deals and more tariff threats – February 3, 2026 Update

Discover Freightos Enterprise

Published: February 3, 2026

Blog

Weekly highlights

Ocean rates – Freightos Baltic Index

Asia-US West Coast prices (FBX01 Weekly) decreased 10% to $2,418/FEU.

Asia-US East Coast prices (FBX03 Weekly) decreased 2% to $3,859/FEU.

Asia-N. Europe prices (FBX11 Weekly) decreased 5% to $2,779/FEU.

Asia-Mediterranean prices(FBX13 Weekly) decreased 5% to $4,179/FEU.

Air rates – Freightos Air Index

China – N. America weekly prices increased 8% to $6.74/kg.

China – N. Europe weekly prices decreased 4% to $3.44/kg.

N. Europe – N. America weekly prices increased 10% to $2.53/kg.

Analysis

Winter weather is complicating logistics on both sides of the Atlantic. Affected areas in the US, especially the southeast and southern midwest are still recovering from last week’s major storm and cold.

Storms in the North Atlantic slowed vessel traffic and disrupted or shutdown operations at several container ports across Western Europe and into the Mediterranean late last week. Transits resumed and West Med ports restarted operations earlier this week, but the disruptions have already caused significant delays, and weather is expected to worsen again mid-week.

The resulting delays and disruptions could increase congestion levels at N. Europe ports, but ocean rates from Asia to both N. Europe and the Mediterranean nonetheless dipped 5% last week as the pre-Lunar New Year rush comes to an end. Daily rates this week are sliding further with prices to N. Europe now down to about $2,600/FEU and $3,800/FEU to the Mediterranean – from respective highs of $3,000/FEU and $4,900/FEU in January.

Transpacific rates likewise slipped last week as LNY nears, with West Coast prices easing 10% to about $2,400/FEU and East Coast rates down 5% to $3,850/FEU. West Coast daily prices have continued to slide so far this week, with rates dropping to almost $1,900/FEU as of Monday, a level last seen in mid-December.

Prices across these lanes are significantly lower than this time last year due partly to fleet growth. ONE identified overcapacity as one driver of Q3 losses last year, with lower volumes due to trade war frontloading the other culprit.

And trade war uncertainty has persisted into 2026.

India – US container volumes have slumped since August when the US introduced 50% tariffs on many Indian exports. Just this week though, the US and India announced a breakthrough in negotiations that will lower tariffs to 18% in exchange for a reduction in India’s Russian oil purchases among other commitments. President Trump has yet to sign an executive order lowering tariffs, and the sides have not released details of the agreement, but once implemented, container demand is expected to rebound on this lane.

Recent steps in the other direction include Trump issuing an executive order that enables the US to impose tariffs on countries that sell oil to Cuba, and threatening tariffs and other punitive steps targeting Canada’s aviation manufacturing.

The recent volatility of and increasing barriers to trade with the US since Trump took office last year are major drivers of the warmer relations and increased and diversified trade developing between other major economies. The EU signed a major free trade agreement with India last week just after finalizing a deal with a group of South American countries, and other countries like the UK are exploring improved ties with China as well.

In a final recent geopolitical development, Panama’s Supreme Court nullified Hutchinson Port rights to operate its terminals at either end of the Panama Canal. The Hong Kong company was in stalled negotiations to sell those ports following Trump’s objection to a China-related presence in the canal. Maersk’s APMTP was appointed to take over operations in the interim.

In air cargo, pre-LNY demand may be one factor in China-US rates continuing to rebound to $6.74/kg last week from about $5.50/kg in early January. Post the new year slump, South East Asia – US prices are climbing as well, up to almost $5.00/kg last week from $4.00/kg just a few weeks ago.

China – Europe rates dipped 4% to $3.44/kg last week, with SEA – Europe prices up 7% to more than $3.20/kg, and transatlantic rates up 10% to more than $2.50/kg, a level 25% higher than early this year.

Discover Freightos Enterprise

Freightos Terminal: Real-time pricing dashboards to benchmark rates and track market trends.

Procure: Streamlined procurement and cost savings with digital rate management and automated workflows.

Rate, Book, & Manage: Real-time rate comparison, instant booking, and easy tracking at every shipment stage.

Judah Levine

Head of Research, Freightos Group

Judah is an experienced market research manager, using data-driven analytics to deliver market-based insights. Judah produces the Freightos Group’s FBX Weekly Freight Update and other research on what’s happening in the industry from shipper behaviors to the latest in logistics technology and digitization.

Put the Data in Data-Backed Decision Making

Freightos Terminal helps tens of thousands of freight pros stay informed across all their ports and lanes

The post Winter weather challenges, trade deals and more tariff threats – February 3, 2026 Update appeared first on Freightos.

Continue Reading

Non classé

Microsoft and the Operationalization of AI: Why Platform Strategy Is Colliding with Execution Reality

Published

on

By

Microsoft And The Operationalization Of Ai: Why Platform Strategy Is Colliding With Execution Reality

Microsoft has positioned itself as one of the central platforms for enterprise AI. Through Azure, Copilot, Fabric, and a rapidly expanding ecosystem of AI services, the company is not merely offering tools, it is proposing an operating model for how intelligence should be embedded across enterprise workflows.

For supply chain and logistics leaders, the significance of Microsoft’s strategy is less about individual features and more about how platform decisions increasingly shape where AI lives, how it is governed, and which decisions it ultimately influences.

From Cloud Infrastructure to Operating Layer

Historically, Microsoft’s role in supply chain technology centered on infrastructure and productivity software. Azure provided scalable compute and storage, while Office and collaboration tools supported planning and coordination. That boundary has shifted.

Microsoft is now positioning AI as a horizontal operating layer that spans data management, analytics, decision support, and execution. Azure AI services, Microsoft Fabric, and Copilot are designed to work together, reducing friction between data ingestion, model development, and business consumption.

The implication for operations leaders is subtle but important: AI is no longer something added to systems; it is increasingly embedded into the platforms those systems rely on.

Copilot and the Question of Decision Proximity

Copilot has become a focal point of Microsoft’s AI narrative. Positioned as an assistive layer across applications, Copilot aims to surface insights, generate recommendations, and automate routine tasks.

For supply chain use cases, the key question is not whether Copilot can generate answers, but where those answers appear in the decision chain. Insights delivered inside productivity tools can improve awareness and coordination, but operational value depends on whether recommendations are connected to execution systems.

This highlights a broader pattern: AI that remains advisory improves efficiency; AI that is embedded into workflows influences outcomes. Microsoft’s challenge is bridging that gap consistently across heterogeneous enterprise environments.

Microsoft Fabric and the Data Foundation Problem

Microsoft Fabric represents an attempt to simplify and unify the enterprise data landscape. By combining data engineering, analytics, and governance into a single platform, Microsoft is addressing one of the most persistent barriers to AI adoption: fragmented and inconsistent data.

For supply chain organizations, Fabric’s value lies in its potential to standardize event data across planning, execution, and visibility systems. However, unification does not eliminate the need for data discipline. Event quality, latency, and ownership remain operational issues, not platform features.

Fabric reduces friction, but it does not resolve governance by itself.

Integration with Existing Enterprise Systems

Microsoft’s AI strategy assumes coexistence with existing ERP, WMS, TMS, and planning platforms. Integration, rather than replacement, is the dominant pattern.

This creates both opportunity and risk. On one hand, Microsoft can act as a connective tissue across systems that were never designed to work together. On the other, loosely coupled integration increases dependence on interface stability and data consistency.

In execution-heavy environments, even small integration failures can cascade quickly. As AI becomes more embedded, integration reliability becomes a strategic concern.

Where AI Is Delivering Value, and Where It Isn’t

AI deployments tend to deliver value fastest in areas such as demand sensing, scenario analysis, reporting automation, and exception identification. These use cases align well with Microsoft’s strengths in analytics, collaboration, and scalable infrastructure.

Where value is harder to realize is in autonomous execution. Closed-loop decision-making that directly triggers operational action requires tighter coupling with execution systems and clearer decision ownership.

This reinforces a recurring theme: platform AI accelerates insight, but execution still depends on operating model design.

Constraints That Still Apply

Despite the breadth of Microsoft’s AI portfolio, familiar constraints remain. Data quality, security, compliance, and organizational readiness continue to limit outcomes. AI platforms do not eliminate the need for process clarity or decision accountability.

In some cases, the ease of deploying AI services can outpace an organization’s ability to absorb them operationally. This creates a risk of insight saturation without action.

Why Microsoft Matters to Supply Chain Leaders

Microsoft’s relevance lies in its ability to shape the default environment in which enterprise AI operates. Platform decisions made today influence data architectures, governance models, and user expectations for years.

For supply chain leaders, the key takeaway is not to adopt Microsoft’s AI stack wholesale, but to understand how platform-level AI affects where intelligence sits, how it flows, and who ultimately acts on it.

The next phase of AI adoption will not be defined solely by model performance. It will be defined by how effectively platforms like Microsoft’s translate intelligence into operational decisions under real-world constraints.

The post Microsoft and the Operationalization of AI: Why Platform Strategy Is Colliding with Execution Reality appeared first on Logistics Viewpoints.

Continue Reading

Trending