Connect with us

Non classé

Supply Chain AI: 25 Current Use Cases (and a Handful of Future Ones)

Published

on

Supply Chain Ai: 25 Current Use Cases (and A Handful Of Future Ones)

When it came out, ChatGPT seemed like magic. It has led supply chain vendors to discuss how they currently use artificial intelligence. Further, virtually every supplier of supply chain solutions is eager to explain the ongoing investments they are making in artificial intelligence.

Any device that can perceive its environment and can take actions that maximize its chance of success at some goal is engaged in some form of artificial intelligence. AI is not a new technology in the supply chain realm; it has been used in some cases for decades. More recently, many other cases have emerged.

Optimization is used in supply planning, factory scheduling, supply chain design, and transportation planning. In a broad sense, optimization refers to creating plans that help companies achieve service levels and other goals at the lowest cost. In mathematical terms, optimization is a mixed-integer or linear programming approach to finding the best combination of warehouses, factories, transportation flows, and other supply chain resources under real-world constraints.

Machine Learning occurs when a machine takes the output, observes its accuracy, and updates its model so that better outputs will occur. Demand planning engines have natural feedback loops that allow the forecast engine to learn. The forecast can be compared to what actually shipped or sold.

Since ML began being used in demand forecasting in the early 2000s, ML has helped greatly increase the breadth and depth of forecasting. Now, ML forecasting is not just monthly or quarterly; weekly and even daily forecasting is now possible. We have moved from product-level forecasts at a regional level to stock-keeping unit forecasts made at the store level. More recently, demand planning applications based on machine learning have improved forecasting by incorporating competitor pricing data, store traffic, and weather data.

We are no longer just forecasting demand but also when trucks and factory machinery are likely to break down (predictive maintenance), the optimal amount of inventory to hold and where it should be held (inventory optimization), and labor forecasting in the warehouse. This type of forecasting can forecast the number of employees required to perform estimated work down to the day, shift, job, and zone level. ML can also be used to generate labor standards for warehouse workers.

ML techniques like clustering, data similarity, and semantic tagging can automate master data management. Without accurate data, companies face the garbage in, garbage out problem.

In terms of supply planning, if key parameters (like supplier lead times) are no longer correct, then the planning becomes suboptimal. ML is being used to keep key parameters and policies up to date. It is also being used to predict whether an SKU believed to be in stock at a store is actually out of stock.

Supply chain risk solutions use ML and other forms of AI to predict which suppliers are included in a company’s multi-tier supply chain. This is becoming increasingly necessary as customs will hold up shipments at the port if it believes the shipment contains products made with slave labor from China, even if those components came from their supplier’s supplier’s supplier and represent a minuscule portion of the total cost of the product. Shippers’ end-to-end supply chain predictions are based on applying AI to OpenWeb searches, import/export records, data from sourcing platforms like ThomasNet, federal logistics records, and other data. These predictions accelerate a company’s ability to verify how its extended supply chain is constructed. Customs uses the same technology to determine which shipments should be denied entry.

Natural Language Processing is used to classify commodity classification for use in imports and exports and in real-time supply chain risk solutions.

The Harmonized System is a commodity classification coding taxonomy that forms the basis upon which all goods are identified for customs. It is used by customs authorities worldwide. Using the right product classification allows companies to pay the correct tariffs. Paying the right tariffs is necessary to avoid government fines and calculate the true landed cost of products. The problem is that there is an incredible gap between how products are described commercially and how they are expressed in the national customs tariff schedules. This has resulted in error rates as high as 30%. The combination of natural language processing and expert systems has been used to automate and significantly improve the classification process.

Real-time risk solutions also use natural language processing to read online publications and other data sources, make sense of what they read, contextualize the data into information, and report supply chain disruptions caused by weather, geopolitical events, and other hazards in near real-time. Every step in that value chain has search terms associated with it. The names of the suppliers, carriers, logistics service providers become search terms. Those search terms are paired with terms signaling a problem – those terms might be “bankruptcy,” “plant fire,” “port explosion,” “strike”, and many, many other terms. So, the term “Haiphong” when combined in an article with the phrase “port fire” would generate an alert.

Reinforcement Learning is a form of machine learning that lets AI models refine their decision-making process based on positive, neutral, and negative feedback. For example, if you want to train a vision system to recognize a dog’s image, you will start by using humans to look at tens of thousands of images of animals. The humans label the pictures as dog, not dog, or unclear. The computer is then presented with those images. The system would say, “this is a dog” or “this is not a dog” and it learns whether its conclusion was correct.

Drones use this form of AI to improve inventory accuracy in a warehouse. Reinforcement learning allows the drone to recognize warehouse racks, pallets, and cases and get close enough to inventory to scan the barcodes. Similarly, reinforcement learning has been applied to security camera footage in the warehouse to ensure workers are following standard operating procedures.

Simultaneous localization and mapping (SLAM) allows a vehicle to construct and update a map of an unknown environment while simultaneously keeping track of the vehicle’s location within it. This technology allows mobile robots to move autonomously through a warehouse.

Drones and autonomous mobile robots using SLAM are in an early adoption stage for last-mile deliveries. Autonomous trucks will revolutionize logistics.

Autonomous trucks are not yet feasible, but we are probably just a couple of years out from being able to transport goods from a distribution center to a retail facility autonomously.

Causal AI is a technique in artificial intelligence that builds a causal model and can make inferences using causality rather than just correlation. Cause-and-effect relationships in an extended supply chain can be an intricate web that is difficult to unravel, but these relationships govern business operations. A causal model graph represents a network of interconnected entities and relationships, enabling the system to understand how various factors influence each other to create an optimized outcome. By leveraging causal knowledge and data graphs, Causal AI can navigate complex business scenarios, anticipate outcomes, and recommend optimal courses of action. Georgia-Pacific has demonstrated an application of Causal AI to improve touchless commerce dramatically. The solution was used to detect and correct both common and uncommon order errors or discrepancies in near real-time.

GenerativeAI is the new kid on the block. GenAI can generate text, images, videos, or other data using generative models. Some warehouse management suppliers are exploring using GenAI to generate end-of-shift reports or talking points used at standup meetings at the beginning of a shift.

Several supply chain application vendors are investing in GenAI to improve their user interfaces. The idea is that a user will make a request, and the system will take them directly to the answer they seek. GenAI can also help interpret complex charts and planning outputs. If a planning system indicates that a plan shows high costs or an inability to achieve targeted service levels, GenAI can help explain the upstream constraints driving that outcome.

Planning vendors are also interested in using GenAI to solve the black box problem. The black box problem occurs when planners don’t understand how the planning engine produced the plan it did. If they don’t understand it, they don’t trust it, and they then produce a much less optimal plan using Excel.

In the longer term, GenAI will help some planning vendors generate autonomous plans. When disruptions constantly occur, there is no time to constantly create and analyze scenarios on how to react best. Autonomous planning can improve a company’s supply chain agility. However, it is worth noting that a few planning suppliers can already generate autonomous plans based on ML and attribute-based planning rather than having to rely on GenAI.

The post Supply Chain AI: 25 Current Use Cases (and a Handful of Future Ones) appeared first on Logistics Viewpoints.

Continue Reading

Non classé

India–U.S. Trade Announcement Creates Strategic Options, Not Executable Change

Published

on

By

India–u.s. Trade Announcement Creates Strategic Options, Not Executable Change

The announcement by Donald Trump and Narendra Modi of an India–U.S. “trade deal” has drawn immediate attention from global markets. From a supply chain and logistics perspective, however, the more important observation is not the scale of the claims, but the lack of formal detail required for execution.

At this stage, what exists is a political statement rather than a completed trade agreement. For companies managing sourcing, manufacturing, transportation, and compliance across India–U.S. trade lanes, uncertainty remains the defining condition.

What Has Been Announced So Far

Based on public statements from the U.S. administration and reporting by CNBC and Al Jazeera, several points have been asserted:

U.S. tariffs on Indian goods would be reduced from an effective 50 percent to 18 percent

India would reduce tariffs and non tariff barriers on U.S. goods, potentially to zero

India would stop purchasing Russian oil and increase energy purchases from the United States

India would significantly increase purchases of U.S. goods across energy, agriculture, technology, and industrial sectors

Statements from the Indian government have been more limited. New Delhi confirmed that U.S. tariffs on Indian exports would be reduced to 18 percent, but it did not publicly confirm commitments related to Russian oil, agricultural market access, or large scale procurement from U.S. suppliers.

This divergence matters. In supply chain planning, commitments only become relevant when they are documented, scoped, and enforceable.

Why This Is Not Yet a Trade Agreement

From an operational standpoint, the announcement lacks several elements required to support planning and execution:

No published tariff schedules by HS code

No clarification on rules of origin

No definition of non tariff barrier reductions

No implementation timelines

No enforcement or dispute resolution mechanisms

Without these components, companies cannot reliably model landed cost, supplier risk, or network design changes.

By comparison, India’s recently announced trade agreement with the European Union includes detailed provisions covering market access, regulatory alignment, and investment protections. Those provisions are what allow supply chain leaders to translate trade policy into operational decisions. The U.S. announcement does not yet meet that threshold.

Implications for Supply Chains

Tariff Reduction Could Be Material if Formalized

An 18 percent tariff rate would improve India’s competitive position relative to regional peers such as Vietnam, Bangladesh, and Pakistan. If implemented and sustained, this could support incremental sourcing from India in sectors such as textiles, pharmaceuticals, and light manufacturing.

For now, however, this remains a scenario rather than a planning assumption.

Energy Commitments Are the Largest Unknown

The claim that India would halt purchases of Russian oil has significant implications across energy, chemical, and manufacturing supply chains. Russian crude has been a key input for Indian refineries and downstream industrial production.

A shift away from that supply would affect energy input costs, tanker routing, port utilization, and U.S.–India crude and LNG trade volumes. None of these impacts can be assessed with confidence without confirmation from Indian regulators and implementing agencies.

Agriculture Remains Politically and Operationally Sensitive

U.S. officials have suggested expanded access for American agricultural exports. Historically, agriculture has been one of the most protected and politically sensitive sectors in India.

Any meaningful liberalization would raise questions around cold chain capacity, port infrastructure, domestic political resistance, and regulatory compliance. These factors introduce execution risk that supply chain leaders should consider carefully.

Compliance and Digital Trade Issues Are Unresolved

Several areas remain undefined:

Whether India will adjust pharmaceutical patent protections

Whether U.S. technology firms will receive exemptions from digital services taxes

Whether labor and environmental standards will be linked to market access

Each of these issues influences sourcing strategies, contract terms, and long term cost structures.

Practical Guidance for Supply Chain Leaders

Until formal documentation is released, a measured approach is warranted:

Avoid making structural network changes based on political announcements

Model tariff exposure using multiple scenarios rather than a single assumed outcome

Monitor customs and regulatory guidance rather than headline statements

Assess exposure to potential energy cost changes in Indian operations

Track implementation of the India–EU agreement as a near term reference point

Bottom Line

This announcement suggests a potential shift in the direction of India–U.S. trade relations, but it does not yet provide the clarity required for operational decision making.

For now, it creates strategic optionality rather than executable change.

Until tariff schedules, regulatory commitments, and enforcement mechanisms are formally published, supply chain and logistics leaders should treat this development as informational rather than actionable. In trade, execution begins only when the documentation exists.

The post India–U.S. Trade Announcement Creates Strategic Options, Not Executable Change appeared first on Logistics Viewpoints.

Continue Reading

Non classé

Winter weather challenges, trade deals and more tariff threats – February 3, 2026 Update

Published

on

By

Winter weather challenges, trade deals and more tariff threats – February 3, 2026 Update

Discover Freightos Enterprise

Published: February 3, 2026

Blog

Weekly highlights

Ocean rates – Freightos Baltic Index

Asia-US West Coast prices (FBX01 Weekly) decreased 10% to $2,418/FEU.

Asia-US East Coast prices (FBX03 Weekly) decreased 2% to $3,859/FEU.

Asia-N. Europe prices (FBX11 Weekly) decreased 5% to $2,779/FEU.

Asia-Mediterranean prices(FBX13 Weekly) decreased 5% to $4,179/FEU.

Air rates – Freightos Air Index

China – N. America weekly prices increased 8% to $6.74/kg.

China – N. Europe weekly prices decreased 4% to $3.44/kg.

N. Europe – N. America weekly prices increased 10% to $2.53/kg.

Analysis

Winter weather is complicating logistics on both sides of the Atlantic. Affected areas in the US, especially the southeast and southern midwest are still recovering from last week’s major storm and cold.

Storms in the North Atlantic slowed vessel traffic and disrupted or shutdown operations at several container ports across Western Europe and into the Mediterranean late last week. Transits resumed and West Med ports restarted operations earlier this week, but the disruptions have already caused significant delays, and weather is expected to worsen again mid-week.

The resulting delays and disruptions could increase congestion levels at N. Europe ports, but ocean rates from Asia to both N. Europe and the Mediterranean nonetheless dipped 5% last week as the pre-Lunar New Year rush comes to an end. Daily rates this week are sliding further with prices to N. Europe now down to about $2,600/FEU and $3,800/FEU to the Mediterranean – from respective highs of $3,000/FEU and $4,900/FEU in January.

Transpacific rates likewise slipped last week as LNY nears, with West Coast prices easing 10% to about $2,400/FEU and East Coast rates down 5% to $3,850/FEU. West Coast daily prices have continued to slide so far this week, with rates dropping to almost $1,900/FEU as of Monday, a level last seen in mid-December.

Prices across these lanes are significantly lower than this time last year due partly to fleet growth. ONE identified overcapacity as one driver of Q3 losses last year, with lower volumes due to trade war frontloading the other culprit.

And trade war uncertainty has persisted into 2026.

India – US container volumes have slumped since August when the US introduced 50% tariffs on many Indian exports. Just this week though, the US and India announced a breakthrough in negotiations that will lower tariffs to 18% in exchange for a reduction in India’s Russian oil purchases among other commitments. President Trump has yet to sign an executive order lowering tariffs, and the sides have not released details of the agreement, but once implemented, container demand is expected to rebound on this lane.

Recent steps in the other direction include Trump issuing an executive order that enables the US to impose tariffs on countries that sell oil to Cuba, and threatening tariffs and other punitive steps targeting Canada’s aviation manufacturing.

The recent volatility of and increasing barriers to trade with the US since Trump took office last year are major drivers of the warmer relations and increased and diversified trade developing between other major economies. The EU signed a major free trade agreement with India last week just after finalizing a deal with a group of South American countries, and other countries like the UK are exploring improved ties with China as well.

In a final recent geopolitical development, Panama’s Supreme Court nullified Hutchinson Port rights to operate its terminals at either end of the Panama Canal. The Hong Kong company was in stalled negotiations to sell those ports following Trump’s objection to a China-related presence in the canal. Maersk’s APMTP was appointed to take over operations in the interim.

In air cargo, pre-LNY demand may be one factor in China-US rates continuing to rebound to $6.74/kg last week from about $5.50/kg in early January. Post the new year slump, South East Asia – US prices are climbing as well, up to almost $5.00/kg last week from $4.00/kg just a few weeks ago.

China – Europe rates dipped 4% to $3.44/kg last week, with SEA – Europe prices up 7% to more than $3.20/kg, and transatlantic rates up 10% to more than $2.50/kg, a level 25% higher than early this year.

Discover Freightos Enterprise

Freightos Terminal: Real-time pricing dashboards to benchmark rates and track market trends.

Procure: Streamlined procurement and cost savings with digital rate management and automated workflows.

Rate, Book, & Manage: Real-time rate comparison, instant booking, and easy tracking at every shipment stage.

Judah Levine

Head of Research, Freightos Group

Judah is an experienced market research manager, using data-driven analytics to deliver market-based insights. Judah produces the Freightos Group’s FBX Weekly Freight Update and other research on what’s happening in the industry from shipper behaviors to the latest in logistics technology and digitization.

Put the Data in Data-Backed Decision Making

Freightos Terminal helps tens of thousands of freight pros stay informed across all their ports and lanes

The post Winter weather challenges, trade deals and more tariff threats – February 3, 2026 Update appeared first on Freightos.

Continue Reading

Non classé

Microsoft and the Operationalization of AI: Why Platform Strategy Is Colliding with Execution Reality

Published

on

By

Microsoft And The Operationalization Of Ai: Why Platform Strategy Is Colliding With Execution Reality

Microsoft has positioned itself as one of the central platforms for enterprise AI. Through Azure, Copilot, Fabric, and a rapidly expanding ecosystem of AI services, the company is not merely offering tools, it is proposing an operating model for how intelligence should be embedded across enterprise workflows.

For supply chain and logistics leaders, the significance of Microsoft’s strategy is less about individual features and more about how platform decisions increasingly shape where AI lives, how it is governed, and which decisions it ultimately influences.

From Cloud Infrastructure to Operating Layer

Historically, Microsoft’s role in supply chain technology centered on infrastructure and productivity software. Azure provided scalable compute and storage, while Office and collaboration tools supported planning and coordination. That boundary has shifted.

Microsoft is now positioning AI as a horizontal operating layer that spans data management, analytics, decision support, and execution. Azure AI services, Microsoft Fabric, and Copilot are designed to work together, reducing friction between data ingestion, model development, and business consumption.

The implication for operations leaders is subtle but important: AI is no longer something added to systems; it is increasingly embedded into the platforms those systems rely on.

Copilot and the Question of Decision Proximity

Copilot has become a focal point of Microsoft’s AI narrative. Positioned as an assistive layer across applications, Copilot aims to surface insights, generate recommendations, and automate routine tasks.

For supply chain use cases, the key question is not whether Copilot can generate answers, but where those answers appear in the decision chain. Insights delivered inside productivity tools can improve awareness and coordination, but operational value depends on whether recommendations are connected to execution systems.

This highlights a broader pattern: AI that remains advisory improves efficiency; AI that is embedded into workflows influences outcomes. Microsoft’s challenge is bridging that gap consistently across heterogeneous enterprise environments.

Microsoft Fabric and the Data Foundation Problem

Microsoft Fabric represents an attempt to simplify and unify the enterprise data landscape. By combining data engineering, analytics, and governance into a single platform, Microsoft is addressing one of the most persistent barriers to AI adoption: fragmented and inconsistent data.

For supply chain organizations, Fabric’s value lies in its potential to standardize event data across planning, execution, and visibility systems. However, unification does not eliminate the need for data discipline. Event quality, latency, and ownership remain operational issues, not platform features.

Fabric reduces friction, but it does not resolve governance by itself.

Integration with Existing Enterprise Systems

Microsoft’s AI strategy assumes coexistence with existing ERP, WMS, TMS, and planning platforms. Integration, rather than replacement, is the dominant pattern.

This creates both opportunity and risk. On one hand, Microsoft can act as a connective tissue across systems that were never designed to work together. On the other, loosely coupled integration increases dependence on interface stability and data consistency.

In execution-heavy environments, even small integration failures can cascade quickly. As AI becomes more embedded, integration reliability becomes a strategic concern.

Where AI Is Delivering Value, and Where It Isn’t

AI deployments tend to deliver value fastest in areas such as demand sensing, scenario analysis, reporting automation, and exception identification. These use cases align well with Microsoft’s strengths in analytics, collaboration, and scalable infrastructure.

Where value is harder to realize is in autonomous execution. Closed-loop decision-making that directly triggers operational action requires tighter coupling with execution systems and clearer decision ownership.

This reinforces a recurring theme: platform AI accelerates insight, but execution still depends on operating model design.

Constraints That Still Apply

Despite the breadth of Microsoft’s AI portfolio, familiar constraints remain. Data quality, security, compliance, and organizational readiness continue to limit outcomes. AI platforms do not eliminate the need for process clarity or decision accountability.

In some cases, the ease of deploying AI services can outpace an organization’s ability to absorb them operationally. This creates a risk of insight saturation without action.

Why Microsoft Matters to Supply Chain Leaders

Microsoft’s relevance lies in its ability to shape the default environment in which enterprise AI operates. Platform decisions made today influence data architectures, governance models, and user expectations for years.

For supply chain leaders, the key takeaway is not to adopt Microsoft’s AI stack wholesale, but to understand how platform-level AI affects where intelligence sits, how it flows, and who ultimately acts on it.

The next phase of AI adoption will not be defined solely by model performance. It will be defined by how effectively platforms like Microsoft’s translate intelligence into operational decisions under real-world constraints.

The post Microsoft and the Operationalization of AI: Why Platform Strategy Is Colliding with Execution Reality appeared first on Logistics Viewpoints.

Continue Reading

Trending